
ADAIOO 518 FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AFB OH F/G 9/2
A SOFTWARE FOR CAD PHOTOMASK"--- ZB-761M(U).AY 81 H X IAN-_.ONG.

UNCLASSIFIED FTD-ID(RS)T-0018-81 NL

iMnElllEElEE

- FOREIGN TECHNOLOGY DIVISION

A SOFTWARE FOR CAD PHOTOMASK ZB-761

by

Hong XiJar-long

jU J2 4981j

C-,

Approved for, public release;
LA_- distributioni unilimited.

I"FTD -ID(ns')T-0o18-81

EDITED T6"ANSLATION

FTD.-ID(RS)T-0018-8l 21 May 1981

MICROFICHE NR: FTD-81-C-000450

A SOFTWARE FOR CAD PHOTOMASK -- ZB-761li

By: %Hon g/Xi 1an long

English pages: 27

Source: Journal of Qing Hua University, Vol.
19, Nr. 2, 1979, pp. 63-73

Country of origin: China
Translated by: SCITRA1

F 33657-78 -D-06-19
Requester: FTD/TQTR
Approved for public release; distribution
unlimited.

THIS TRANSLATION IS A RENDITION OF THE ORIGI.J
NAL FOREIGN TEXT WITHOUT ANY ANALYtTICAL OR
EDITORIAL COMMENT. STATEMENTS OR THEORIES PREPARED BY:
ADVOCAT E DOR ImPL IE DAR ETHOSE OF TH E SO URC E
AND DO NOT NECESSARILY REFLECT THE POSITION TRANSLATION DIVISION4
OR OPINION OF THE FOREIGN TECHNOLOGY DI- FOREIGN TECHNOLOGY DIVISION
VISION. WP.AFB, OHIO.

FTD -IDR)Tn_1.8l Date 21 May 19 81

Ac ron + ,o, r I

A bUk"EwAI P'UI(UAV viUTUMAb --- Zis-761

Hong Xian-long

Department of Eleotronie Engineering, -

Qinhue University

Abstract

As a part ef the L81 UAD, a software for CAD photomask

ZU-761 was designed and put into use on a DJS-130 computer in 1976.

Since then several dozens of IC photomasks have been made.

The input language of the software has a fairly high ability

of desoribing Ic patterns. Its date structure enables minicomputers

such as DJS-130 (without the external storage) to handle a large

amount of IC pattern data. The mask fabrication time using special

equipments has been reduced extensively because of the optimization

of the object program. Furthermore, the softw~are possesses some

ability of data checking and man-machine conversation.

This paper introduces in detail the characteristics of the

input language of the software, data structure, transformation

computation in compilation, and optimization of the object proeram,

etc. It also proposes some idea about the automation in LSI

pattern design.

Introduction

Computer Aided uesign of Fhotomask is a technology of fabri-

cating photomesks of Large bcaie Integrated-circuits using computers

and special mask-fabrication equipments. it is a part of LSI CAD.

CADP can be realized by writing a source program in the form

of specially designed "CADP languare" from a man designed IC pattern

1

sketch, inputing it into a computer by meens o" paper tape or

keyboard. After the processing of the CAue language compiler, the

computer produces a paper tape ror program control which is then

used to drive program controlled mask fabrication equipments to

fabricate intermediate-step photomasks (these program controlled

equipments may also be connected directly with the computer to

fabricate photomasks). Up till now, the program controlled mask

fabrication equipments are automatic mask cutting machines, pattern

generators and electron beam mask fabrication equipments. It is

more often to use the former two. Also, uADP may be realized by

inputing pattern data and other necessary information directly into

the computer by means of "man-mechine conversation" pattern input

equipments, if the eveilability of facilities allows, and processing

these date with the computer. The block diagram of CADP is shown

in 'ig.l.

Fig.l The block diaeram of UAVP

1 - Man designed IC pattern sketch

2 - Writing a source program

3 - Computer processing

4 - Control the mask cutting machine to operate

5 - Output a program controlled paper tape

6 - Fabricate the intermedicte-step photomasks by means of

miniature photoerephing
2. --

7 - kettern gCnerator fabricates the intermediate-step

photomesks

8 - btep-by-step objective photomesk fabrication

There are six parts in this paper: 1) An outline of ZB-761

input laneunge; 2) Data structure of the softwrre; 3) Transformation

computation in compilation; 4) Optimization of the objective

program; 5) Result checking and man-machine conversation; 6) Ideas

and preperations of realizing automatic design.

I. AN OVTLI1r: AMN bQ" ' U1AkAAuTI'?±'RLTUS UY Zb-76l 4MU' i Nt~L'j

zb-761 languECe is a specially designed language for IC photo-

mask fabrication. There are more then thirty statements in this

lenguse which are divided into three types. The first type is

"declaration type" which describes the technoloCical specifications

in fabrication end the working conditions of the pattern generator.

The second one is "pattern description type" which describes the

photomask patterns. The third one is "operation type" which drives

various peripheral equipments to operate.

The construction of the source program of ZB-761 lenguage can

be shotn with ig.2.

The "subpattern statements" in fig.2 are the ones that describe

a rectangular and simple combinations of rectengulers. Also, the

"transformation staterents" describe translation, symetrization

and rotation of subpetterns. The subpLtern statements are the

most basic ones among ell these statements since a rectangular is

the sirplest unit subpattern in a digital circuit pattern.

3

technological specification declaration

statements

declaration statements for the upper
declaration part platform of the pattern Cenerator

unit circuit library declaration

statements

beginning of the program segments

subpattern statements

p transformation statements

combination statements
-pattern descrip-

combined subpattern

tion part
I-pattern de-

declaration

source (region procrea
scription2 call statements

program segments and the part in the

layer piling statements

entire pattern program
interconnection line

program segment) segments
stvtements

automatic design

statements

other statements

-end of the program segments

r printout statements
punchout statements

-o p e r a t i o n p a r td r w s a e n tdreve statements

display statements

Fie.2 SQ.rce program structure of ZD-761 language

__ __ _ __

We will not explain these statements one-by one. Instead, we

shall compare them with some standard prorremming language to in-

troduce some characteristics of this lanuage. For more detail

please refer to L13.

Now te compare the language ZB-761 with I'ORTHAN.

(1) Block structure --- program segment

The key part of the ZB-761 language, that is, the pattern de-

scription part, is structured in blocks. It is comprised of an

"entire pattern program segment" corresponding to a main program

and several "region program segments" corresponding to subprograms.

In spite of the complexity that a digital circuit may have,

it can always be decomposed into some subcircuits (e.g. gates,flip-

flops, shift registers, etc.). The corresponding design pattern

is also comprised of subpatterns corresponding to these subcircuits

and the interconnection lines between them. Thus we may define

these subcircuit patterns as "region program segments", and only

use call statements in the main program to form a desired pattern.

This can also be generalized to any frequently-appearing subpatterns.

The characteristics of the block structure enables each program

segment to describe a subpattern independently. It also ensures

the separation of writing, debugging and checking of the source

program. Also, it is convenient for several people to write the

source program for the same design pattern.

(2) Parameters and arguments --- definition, calling end

transformation of program segments

In defining the region program segments, although a user

writes the source program in accordance vith the actual coordinates

5

in a design pattern, the region program segments after compiling

do not represent the actual pattern. They only represent "floating"

subpatterns with relative coordinates. The actual pattern is

reconstructed by the arguments in the call statements. The

arguments include the X, Y coordinates of the lower-left corner of

the subpatterns and the transformation statements describing the

geometrical trensformation relation.

ror example, Fig.3 shows a design

pattern wvhich includes three identical

subpatterns with different positions
x.,yl

and different orientation. Considering

__I Xa.,Y the same subpattern Q, in position

0,0 (0,0), we define a region program

segment named Q,. The subpattern Q,
.vig. 3

may be single-layered or multi-

layered. The actual subpetterns at

(x o), (x, ,y,), tx,,y,) are realized by calling Q,. This can be

written in ZB-761 language as:

%I)Y O,)

1%PY Xo, Y ../

ADY 0,.
ASZ X1, y,

ADY 01,)
AYD x: , Y.

where "u."s are the statement seperators, "tUY", " eY", "SZ", "#u"

are the statements for "call", "translate", "rotate 900 clockwise"

and "symmetrize with respect to Y axis". The execution of the first

6

two statemncnts results in a translated Q, pattern at (x,, y°).. The

middle two statements result in a 900 clockwise rotated Q, pattern

at (x,, yd,. Finally, the last two result in a Y-exis symmetric

pattern of Q at (x,, y) . The three transformation statements

functioned as erguments in calling the subprogram.

(3) Functional statements --- combined subpettern declaration

As the functional statements in FOWTHAN proGramming language,

can define a "combined subpattern" with "combined subpattern decla-

ration" statements in case that the same single-layered combined

subpattern is frequently referred to in a subprogram, then realize

the actual pattern by the call statements and the geometrical

transformation statements.

For example, we assume that the subpatterns in Fig.3 are

single-layered combined subpatterns. in the subprogram we cEn

first define a combined subpattern T, with "combined subpattern

declaration" statements and then call it with the transformation

statements as the arguments to produce three actual subpatterns.

This can be vritten as:

#DY T, J
UPY X0, yOJ

ADY T,)
AVSZ X1, Y1.)

I)Y T,)

AJYD x2, Yt)

(4) Nested calling

The defining and the calling of the combined subpatterns and

subproercris has extensively improved the ability of pattern

7

description. Ifowever, practical circuit patterns often require

the function of nested calling. ZB-761 allows the nests of calling

subprograms or combined subpatterns up to 10 vthile does not allow

any kind of self-calling. For examples of nested calling, please

refer to Fie.4 and Fif;.5.

(5) "bubroutine" --- standard unit circuit library

Again as standard subroutines inru.'(tAN, Z-b-761 is equiped

with a "standard unit circuit library". Frequently used basic

circuit subpatterns are stored in some prescribed way in the

library by means of preprogranming. During the fabrication, the

unit circuit library is called and transformed geometrically to

produce the desired subpatterns.

bince the unit circuit library is usually stored in the

external storage, they must be declared by "unit circuit library

declaration" statements in order to dump these unit circuit

subpatterns into the internal storage for use.

*rhe design of the unit circuit library not only simplifies

the source program, reduces a large amount of %ork in reading

coordinates, it also facilitates the further work such as pattern

assembly and layout.

Uther functions and characteristics of this language such as

transformation of subpattern statements, additivity of transformation,

successive use of transformation statements, and pattern combination

which is similar to do loop will not be dealt with here.

Ii. DR'TA brDJUTUm

Any programming language must deal with the issue of data

;

structure. This problem becomes more important in CADP language

since this language may be viewed as a program for processing graphic

data in some sense.

There are usually a large number of rectanCulars up to several

dozen thousand or even several hundred thousand in an lu pattern.

It will be very space and time consuming if the data of these

rectangulars are stored directly in the computtr. Besides, it will

be very inconvenient to find, to convert, or to modify a particular

one of them. Thus it is necessary to design a date structure to

store these graphic data so as to save the internal storage and to

make it easier to find, to convert, and to modify them.

A so called "intermediate result form" chain structure is

designed for ZB-761 as the basic date structure. After compiling,

the source program is stored in the internal storage as an inter-

mediate result. When the output part is executed, the date in the

intermediate result form are transformed into various output form

required by peripheral equipments.

A nested IU pattern is shown in Iig.4. The entire pattern Zr

is comprised of three regions A,Qb and QU. QA contains 0_41 and

QA2 (names with initial letters Z are entire pattern names,

similarly, Q's denote region names and T's denote combined sub-

pattern names). QB contains OAl and QIi. QL contains (A2 and Ql.

F ach CAl, A2 and Qbl contains TA, TB and TU. TA is comprised of

TB and a subpattern, TC is comprised of TA and the subpattern, while

Tb is comprised of the subpattern only. The subpattern is the

basic graphic cell. After compiling, the date form in the internal

storage is a chain structure as sho,n in Fig.5.

9

jf77f T____T

•,TC)L

A2 Q11f1
Zi

Fig.-4 A nested pattern

ZiOA QA1 TA

ind. - indicator

sub. - subpattern

Fig.5 Data structure in the internal storage

corresponding to Fig.4

The indicators Q and T in Fig.5 are comprised of six to ten

internal memory cells for each. In case that the program segments

or the combined subpatterns are only called and transformed, the

indicators are comprised of six words as shown in F'ig.6. This is

celled the "simple-indicator". In case that further combination

is needed after those calling and transforming, the "multi-indicetor"s

comprised of seven to ten r:ords as in Fia.7 are used. The trans-

formation code in 'ic.6 and Fic.7 represents the transformation
10

relation between the , or T when they were defined and the O or T

after being called.

transformation code

entrance address of ' or T

length of Q or T

width of q or T Fig.6

X axis coordinate of the lower-left
corner after being called

Y axis coordinate of the lower-left
corner after being called

transformation code

entrance address of ', or T

length of q or T

width of () or T

X axis coordinate of the lower-left
corner after being called

Y axis coordinate of the lover-left Fig.7
corner after being called

special interval of repetition in
X direction

spacial interval of repetition in
Y direction

times of repetition in X direction

times of repetition in Y direction

This structure obviously saves a large amount of the internal

storage. It does not store any redundant parts. Also, due to the

indicators, it is quite convenient to find each data block.
11

It is also convenient to modify the LU patterns with this data

structure. For example, if we wish to add a QUl in Zi, vwe only

need to insert a ,Bl indicator before the end code of Zl. Fig.8

shows the result of adding -.k31 in zi. bimilarly, if we wish to

delete a region Th, it suffices to substitute QB with a reject

indicator. The result of deleting in the data block of ZI is

shown in Fig.9.

beginning of Z1I beginning of ZI

QA indicator QA indicator

QB indicator 1 reject indicator

QU indicator j QC indicator

Qil indicator end of Z1

end of Z1

Fie.9
rig.8

This data structure also makes the layout and assembly easier.

In layout or assembly, we consider the object being assembled as

an entity placed somewhere on the pattern regardless of the contents

contained in the object. In order to assemble QA, .Il and -A! into

Z2, for example, we construct a table shown in rig.10, and fill in

appropriate values "or the transformation codes and lower-left

corner coordinates of the :A, Qbl and ',Al indicators, If we want

to change the position and the orientation of' these regions in the

pattern, we only need to change the above parameters.

Yoreover, an "intermediate form of lines" and some other date

forms hove been designed for ZB-7ul, which Uive date structures of

12

the interi.al storage for manual

beginning of 22 interconnecting, lightpen inter-
-4

indicator I connecting and automatic layout

QBI indicator design.

QA1 indicator

end of Z2 j

Fig.10

III. TRANbr(hr*-.:1UN UrU'ITATUN IN UUTMVILINU

di-e data of an IU pattern needs a large amount of graphic

transformation computations. A computational algorithm of trans-

formation using rectangulars as the basic graphic units is desiEned

for ZB-761 which simplifies the program and makes it easier to read

the pattern.

There are eiEht different kinds of transformations for a graph

with sides parallel to the plane coordinates (the graph is composed

of rectangulars). They are: translation, symmetrization with

respect to the A axis, symmetrization with respect to the Y axis,

synvetrization with respect to a center point, 90e clockwise rotation,

90* counterclockwise rotation, 90 clockwise rotation and symmetri-

zation with respect to the Y axis and 900 counterclockwise rotation

and symmetrization with respect to the Y axis. The latter two are

nothing but the superpositions of the two transformations of the

previous ones, thus any graphic transformation can be exprersed in

terms of six different kinds of transformations.

Symmetric axes, symmetric centers and rotation centers ere

usually considered in denlin vith graphic trr.nsformations. When

13

a Cartesian coordinate systen is transformed, the relation of a

point's coordinates before the transformation and after the trans-

formation can be expressed in the matrix form as:

[x' y' 1)=Cx y 1]A

where x', y' are the coordinates after the transformation, x, y are

the ones before the transformation, A is the following 3X3 matrix:

For translations,

A = P =0 1 0
T, Ty

where Tx, T y are the amount of trenslation;

For symmetry transformations,

S. 0 0

A = D= 0 Sy 0

0 0 1

when S.=j, SY=-1 , D is an X-symmetri78tion matrix; vhen s,=-1, S,=I,

D is a Y-symmetrization matrix; %henS.=S,=-1 , D is a center-

symmetrization matrix;

For rotations,

0 - si,*O 0

A =Z = sin0 0 0

0 0 1

when 0 =90, Z represents a 900 clockwise rotation; when 8 -90, Z

represents a 90" counterclockwise rotation.

This kind of transformation computation requires the user to

find symmetric axes, symmetric centers and rotation centers.

Moreover, since the operand is "points", it increases the amount

14

of work in compiling when these points are converted into rectangulars,

the basic Craphic units in the internal data storEge.

ZB-761 Cives a computational alforithm of transformation with

rectnrulers as the basic graphic units. With this computation

the user does not have to find symmetric axes, symzretric cent-rs

and rotation centers. Instend, it is only required to find the

transformation relation and the lower-left corner coordinates after

the transformation, v.hich is usually a very easy task. This reduces

the amount of v~orl- in readinC the sketch and avoids possible errors

in finding symmetric ares, symnetric centers and rotation centers.

In this case, the transformation computation matrices are:

FI 00o S, 0 0

P= 0 1 0 D= 0 S, 0
X,, Yo , 1 - L, ----L

2 2
0 sin 0 0

Z s inO 0 0

1 - sinO I +sinO
2 L, 2 'L 1

wherexo., y, are the coordinates of the lower-left corner after the

transformation; S., Sa and 9 are as before; L,=L-Ax, Ly=W-Ay, where

L and V., are the length and the width of the outer sides of the

transformed graph, 4, and &y are the length and the Aidth of a

rectaneular inside of that transformed graph.

All the transformptions must be postmultiplied by the P matrix

as the lest step.

Th'o matrix representation of the transformation computation

can be generalized to handle the date representing an array of

15

regularly arranged rectengulars.

IV. 0PTIl'iyPTI(i OF -Ain PRV" IRAY

After copiling, the source program finally becomes sets of

instructions and sets of data for the program controlled equipments

to fabricate photomasks. These sets of instructions and sets of

data are tne objective proiram. The quality of the objective

program directly affects the efficiency of the mask Vabrication

equipments and the quality of the photomasks. Hence it is necessary

to optimize the objective program. We consider mostly the optimi-

zation of the cutting (drawing) program and the operation program

of the pattern generator.

There are three parts in the optimizato.zn of thz operation

program of the pattern generator: the optimization of the lower

platform path, the optimization of the slit path and the optimization
4

of the upper platform path.

The pattern generator works in this way: a light beam from a

source passing through an adjustable rectangular slit, projects a

rectangular exposure region on the film fixed on the lower platform

to fabricate intermediate-step photomasks. Tne lower platform can

move along X and Y direction to change the position of the rectanrular

on the film and to make more rectanCulars in different positions.

Thus in order to fabricate an intermediate-step photomask, the

rectengular slit must be changed frequently and the lower platform

must be moved frequently. The problem of minimizing the total

amount of distance the lower platform travels, and the number of

changes the slit made, is the problem of optimizing the lower

16

_ _ _

platform path and the slit path of the program of the pattern

generator.

Be~ides, for the pattern Cenerator with a fixed Vpattein platform

(upper platform), there are several premade pattern sets on the

upper platform. W'hen the upper platform is used to fabricate

photomasks, the problem of minimizing the total amount of the

distance the fixed platform moved is the optimization problem of

the upper platform path.

The optimization of the lower platform path is most important

among these three. We illustrate its significance with F'ig.ll.

Suppose we want to generate six

identical rectanCulars as shown in Fig.ll.

4 In this case the slit remains unchanCed,

while the lower platform is moved to six

prescribed positions to have the film

exposed. The path indicated by the doted
Fig.11 (i.e. 1 -*6-, , 2-, 5 --- 3)

arrowsis much longer than the path
(i.e.1I- 2 - 3--|- 5 -6)I

indicated by the solid arrows-.--~5-.)
o arrows. Obviously, snorT path means high

efficiency in pattern generating. We cn see from this example

that the optimization problem of the lower platform is in fact the

one of arranging the output order of subpatterns. In general, for

n rectenrulars to be generated, there are ni possibilities of

different orderings. If we go through ell the n! orderings to find

en optimal one, we need to compute (n/e)* different schemes. When n

is large (for CADP n is usually several dozen thousand or several

hundred thousand), the amount of computation is tremendous and is

impossible to implement.

17

is=

Z-761 uses the folloinE optimization altorithm v.hich includes

two steps.

The first step is to renerate the output subpetterns in the

order of areas and to optimize the area order.

The entire pattern is divided into several arevs. The amount

of each are& may be either fixed or varied according to the instruc-

tions of the user. 1'or example, a pattern is divided into 16 areas

which are numbered as in Fig.12 (a) or (b). The generator generates

4 5 12 1 3 016 15 14 1 3

32 6 111 4 9 1o1 U 12
2. 7 10 15 8 71

Fig.12 (a) Fig.12 (b)

sutpatterns in the order of these areas, i.e. first it generates

all the subpatterns in area 1, then generates those in area 2, and

so on. Thus, if each area is viewed as a subpattern, the output

order is optimal.

The second step is to arrange the genereting order of the

subpatterns in each area using "simplified postman's method". The

ides of this method is to find the nearest subpattern with respect

to the current one as the next working object, and to continue this

process until all the subpatterns in the area are done. 'his

method is only rela - vely optimal since it does not compute and

compare all possible orderings. The rigorous optimal one requires

the amount of work up to the order of no, while the "simplified

18

Si

postman's method" requires only that of n which reduces the

computetion tine, simplifies the program, and exhibits a fairly

pood result in experimc.nts.

The optimization of the slit path and the upper platform path

are simple and will not be discussed here.

Tha optimization of cutting (drawing) program is considered

torether with thp problem of "elimination of extra lines",. in the

view of optimizine the drawing program, this problem is to arrenge

the output order of all the lines in the pattern so as to minimize

the path of the pen.

ZB-761 solves this problem as follows. The lines in . direction

and the lines in Y direction are drawn seperately. All the lines

in X direction (or Y direction) are drawn first, then the lines in

the other direction are drawn. This also makes it easier to change

the direction of the cutting tool in the cuttin, program (if there

are several cutting tools in the cuttine machine, the problem of

changing the direction of the cutting tool does not exist). The

s-paths of drawing the lines in one direction are shown in 7ig.13,

in which (;) shows the path of drawing in X direction and (b) shows

that in Y direction. Again this method is. relatively optimal but

not necessarily rigorously optimal. To find the rigorous optimal

one requires again the amiount of work up to the order of n!. However, a

more important reason of using this method is to accommodate the

computational algorithm of the "elimination of extra lines".

bince the pattern generator is regarded as the key equipment

in the mask fabrication, the input language is desitned so as to

meet the requirements of the output of the generstor. In other

19

St~o'9

words, it uses rectangulars as the basic graphic units. Thus there

arises a problem of converting rectan~uler dbta into line seCment

data. For some graphs, "extra lines" appear if rectangulars are

used as the basic graphic units. When the graph in Fig.1 4 is

ic
B .

A1 G F
(a) b

Fig .13 Fig.14

divided into two rectangulars, for example, the extra doted line

DG appears. 'We call this kind of lines as "extra lines". When a

pattern is generated in a pattern generator, the problem of extra

lines will not appear even if the graph ABuu.; is obtained by

putting two rectangulars together. nowever, an extra line will be

drawn in drawing tcutting). These extra lines can be eliminated

when the optimization of the drawing program is performed.

One possible approach is to use the method of eliminating envelopes

in graph theory %hJch is internel storage consuming and time

consuming. The other approach used in ZB-761 has the advantages of

simplifying the program, saving the internal storage and reducing

the computation time. The idea is as follovs.

Let x,, x 2 be the Xcoordin[.tes of a horizontal side of a

rectangular, (,<xl,, and x,,, N4 be that of another one, x,<X4., and

they have the same Y coordinates. There are three cases regarding

to the relation of the k's. The first case is shown in Fig.15,

20

The line segments -,x, and x, x, do not overlap. There

is no extra line in X direction. The second case is shown in ."!i.16,

x1<.<x,<x, •The line serments x, x, and X, - overlap. The portion

of overlaping, e, x,, is the so called "extra line". In this case,

the output line segments are reduced to x, x, and X, X4o x, x, is

eliminated. A degenerated case of this happens when x=x , the

extra line is degenerated into a point. The output line segment

is , x, after eliminating this "extra point" (rig.17). The third

case is shown in 'ig.18, X,<x3<x,<x,. The line segment x, x" is

contained in 7- - In this case the extra line is x, x, The

output line segments are reduced to x, x, and x2 Vhen ,= or

X.=,. (as shovwn in P"ig.19), the output line segment is only -,

or x, x, . When and x,=x, , the line segments x, x, and .K, x,

coincide each other. They are all extra lines and there is no

output line segment (as shown in Fig.20).

The above three cases are combined into the same computational

algorithm. The coordinates of these four points are arranged in

X8 X4

8E 9LZX-
Fie.15 Fig.16 Fig.17

Fig.18 Fig.19 Fi,.20
21

value increasinc order. If there are points having the same

coordinates ttey should be eliminated. Then the remaining points

are coupled from the left to the right to forra the output line

segments.

This idea can be generalized to any number of points. The

algorithm is easy to program. After eliminating the extra lines

in X direction, the same algorithm can be applied to Y direction

to eliminate the extra lines in that direction. The output order

of line segments after eliminating the extra lines is the above

mentioned optimal order.

V. RESULT CiF7CiING AND r.-AUN.:H±N .uUNv,.iA'riUN

,rhe photomask fabrication program is essentially a program for

processing data. it needs to handle more data then for scientific

calculation. Hence, an important problem is how to check these

data results.

Several means for data result checking are considered as

follows.

(1) Syntax error and semantic error checking in compiling,

which can indicate these kind of errors.

(2) Technological specification checking. The user may

prescribe some technological specifications such as the width, the

interspace and the registering tolerance of metal interconnection

lines and diffusion regions by means of technological specification

declaration statements, and then use the program to check whether

the pattern data meet these specifications. This can detect the

data errors that are correct in the sense of syntax.

22

I II • II I I I I - ' i L : L- _: .,: .. . -.

(3) Stepwise and blockwise checking. At each stcp of the

program execution the current data stored in the internal storfge

can be printed out for check by typing in instructions from the

keyboard. The source program con also be tested and checked block

by block because of the block structure.

(4) Checking by means of drawing and displaying. Parts of the

pattern or the entire pattern can be drawn using the drewing machine

or be displayed using the pattern display device. I'suelly the

display device is used for area checking while the drawing machine

is used for the entire pattern checking. Since drawing is well

visualized and it is possible to draw several patterns of different

layers in the same drawing using different colors for registerinr

tolerance checking, it is usually used as the means of the final

check.

(5) Checking of the program controlled paper tape of the

pattern generator. In case that the pattern t.enerator is operated

by being disconnected with the computer and usinG a program

controlled paper tape as the input, it is necessary to check this

paper tape to prevent the data errors on the tape caused by

malfunctions of the computer or the peripheral equipments.

The method used in ZB-761 is to re-input the tape into the

computer and to have it checked by a special checking program which

can either "recover" the data on the tape into the original pattern

date and then output them by printing, displaying or drawing

according to the user's instruction or compare them with the data

stored in the internal storage and check them one by one. The

"recover" used here means to recover the tape date into the data

23

similar to the final results.

In one word, pattern data checking possesses an important

position in the mask fabrication software since it is a vital means

of improving fabrication efficiency, reducing errors and avoiding

doing the same work over again.

Users usually wish to check and modify the pattern data in

each step of the program execution. To meet this requirement a

set of keyboard instructions is set up in ZB-761 which controls

the execution of the program in each step by means of man-machine

conversation. Besidesthe lightven display device can be used to

check and modify the pattern and to display the conversation.

VI. 'I' ,H ' 11JA AND vRi PARAlCN OF

Z1-761 software is only an aid in mask design and fabrication.

Manual work such as drawing the pattern sketch, reading out

necessary data (although the amount of the data read can be reduced

by improving the software) and writing the source program is still

required. However, the design automatization has been considered

and some preparation has been done in designing ZB-761.

The following aspects are considered for the pattern design

automatization.

(1) bet up the unit circuit library. This is both a software

matter and a technological one. Assembly and layout automation

are based on this issue. For the consideration of the software

management, classifiing, indexing and protection of the library

should be taken into account. And of course the data structure of

the library and of these unit circuits must be designed. We made

...... ~2 4

a preliminary attempt to taecLe these problems, that is, we

considered these data structure and the indexing methods. For the

consideration of the technology, the subpatterns of various unit

circuits should be standardized and be normalized to file.

(2) Automatic design subroutines. This method can be aeplied

to several kinds of regular unit circuits such as R0M's and decoders.

This is in fact another kind of unit circuit library. What is

stored in the above mentioned unit circuit library is the subpattern

data while it is the standard subroutines for forming corresponding

subpatterns in this case. The subroutines for forming 1.011's and

decoders are set up in ZB-761. Thus it is only required to give

some technological specifications and circuit information in

forming these subpatterns instead of reading the sketch.

(3) "VLA" automatic design. FLA is the abbreviation for

programmable logic array. ZB-7bl can handle regular patterns such

as registers and shift registers very easily. In case of irregular

circuits, however, more sketch reading is required. Using PLA,

some irregular circuits can be decomposed into "AND" matrix circuits

and "U." matrix circuits whose patterns are regular. Thus the

patterns of irregular circuits can be transformed into regular array

patterns which can be designed automatically by software. We call

this design method as "PLA" automatic design.

(4) Assembly using man-machine conversation. With the above

means, the assembly can be done by assembling subpatterns of unit

circuits into larger pattern blocks of functional circuits and then

into the entire pattern using man-machine conversotion. By this

way the amount of minual work in drawing the sketch and reading

25

the data can agin be reduced. Also, check and modification can

be performed easily during the assembly.

(5) Automatic layout design. based on the above discussion,

the research on automatic layout design program can begin if

conditions allow. *rhis leaves much work to be done so far.

Since 1976 when ZB-761 was put into use, several dozens of

the intermediate-step photomasks have been made, of vwhich there

are 12 bits random access storages, 13 bits Y0S R?0f's,and 10 bits

mNb dynamic shift registers, etc. Some modification and augmentation

has also been made. Because of the limitation of our knowledEe,

there are still some imperfections in the software that need to be

improved further.

The personnel participated in the research of the software is

as follows: Cai Da-yong, Zu Qji-ming, He Xi-zhang , zhang Zhu-ping,

Gao Yong-lin, Zhu Ving-xue and some current graduates majoring in

computer programming. The personnel of Group 209, Institute of

Semiconductor, Academia Sinica, offered us a great help in the

reoearch. we also appreciate the coordination of Sun Jia-guang

and Cheng Yu-lin in software testing.

C1J. uai Va-yong & Hong lian-long, _!anguaefor UAD_ hotomnsk

-Z-7bl, Transactions of Qinhue Univ. vol.1,1978.

26

A Software for CAD Photomask-ZB-761

[long Xian-long Iepartm.nt of Electronic Engineering

Abstract

A-t a part of Ihe L.SI CAD, a qoftware for CAD photornask-ZB-711 was ,ie-

AIgned, an lot i tIt use on a I)JS-130 eomp.uter in 1976. Since then eeveral dozens of

IC plimoinak- hay been made.

27

- -

I

